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Abstract

This paper presents a ®nite element cross-sectional beam analysis capable of capturing transverse shear e�ects.

The approach uses the variational-asymptotic method and can handle beams of general cross-sectional shape and
arbitrary anisotropic material. The work builds on previous works which deal with development of the classical
beam theory, which includes only extension, torsion, and bending. A Timoshenko-like formulation is sought to

achieve a re®ned theory with simple boundary conditions. Apart from some simple special cases, it is shown that
this problem is overdetermined. However, it is possible to obtain `the best possible' solution using the least-squares
minimization technique. The geometrical meaning of the shear variable for this formulation is also derived. Results
are found to be in good agreement with published results for the shear sti�ness coe�cients for both isotropic and

anisotropic beams. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The present cross-sectional beam analysis is developed in order to analyze transverse shear e�ects in
anisotropic prismatic beams of general cross-sectional shape. These e�ects are important in short beam
analysis, high frequency dynamics, and in composite material applications. The paper focuses in the
determination of sti�ness properties, including shear coe�cients, for the cross-sectional analysis of
general anisotropic beams when a one-dimensional (1-D) transverse shear measure is taken into
consideration.
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There has been a debate over the determination of the shear coe�cient spread over the last century.
The reader is encouraged to consult Kaneko (1975) for a good survey of the problem. Foeppl (1927),
which refers to unpublished notes from 1897, obtained a value of k = 5/6 for the shear coe�cient for
rectangular cross sections using an energy-based approach. Filon (1902) presented his shear theory
based on the theory of elasticity and determined the shear coe�cient both theoretically and
experimentally. Timoshenko (1921, 1922) used Filon's experimental determination of the shear
coe�cient in his theory on the e�ect of transverse shear on the transverse vibration of bars. His
de®nition of the shear coe�cient was based on the average shear stress and the angle of shear at the
neutral axis. Later, Timoshenko (1940) de®ned the shear correction factor based on geometrical
assumptions as the ratio of the average strain over the section to the shear strain at the centroid. This
ambiguity in the de®nition of the shear strain variable points out a de®ciency of the geometrically-based
methods. A well-known attempt to improve the results was done by Cowper (1966) whose approach
gives a more involved expression for the shear correction factor based on the mean angle rotation of the
cross section about the neutral axis. His results are closer to those obtained using energy methods, for
example, in the case of a rectangular cross section.

Energy-based methods do not need to assume a de®nition for the shear strain variable. This comes
naturally from the expression for the interior shear force resultant as the derivative of the strain energy
with respect to the shear variable. This type of approach was used with good results by a number of
authors, such as Timoshenko (1958), Dym and Shames (1973), Hoeborn (1993), Renton (1991), and
Schramm et al. (1994). It must be mentioned that all the results discussed here assume a relatively slow
variation of the shear force along the beam. See also Goodier (1938) and Cowper (1966).

Thin-walled beams are a special case of importance for aeronautical structures. In this case, certain
approximations can be made to simplify the problem and render relatively easily obtained approximate
solutions for complex con®gurations; see Bauchau (1985), Reh®eld (1985), Bauchau et al. (1987),
Stemple and Lee (1988), Chandra et al. (1990), and Rand (1998), all of which treat thin-walled beams
made of composite materials. However, since none of these theories is asymptotically correct (nor are
they claimed to be), a degree of uncertainty will always exist as to whether or not the results are
accurate. Moreover, thin-walled beam theories are really inadequate for analysis of realistic rotor blades
and wings, which typically have complex, built-up construction.

For more comprehensive treatment of anisotropic beams, an alternative to making a thin-walled beam
approximation is to undertake a generalization of the Saint-Venant solutions, as done by Giavotto et al.
(1983). A ®nite-element-based computer code called ANBA (Anisotropic Beam Analysis) or NABSA
(Nonhomogeneous Anisotropic Beam Section Analysis) was developed by Borri and co-workers which
renders a 6 � 6 cross-sectional sti�ness matrix, including the two 1-D transverse shear measures (i.e., in
orthogonal directions) along with extension, twist, and bending (the classical 1-D measures). Subsequent
treatments by Kosmatka (1992) follow a similar approach (i.e., extended Saint-Venant solution leading
to a ®nite-element-based cross-sectional analysis). Thus, until the present work, only a very few methods
exist for determination of the cross-sectional sti�nesses of realistic anisotropic beam cross sections so
that the e�ects of transverse shear are included in the resulting 1-D model. Unfortunately, the accuracy
of such models is di�cult to assess.

The variational-asymptotic method pioneered by Berdichevsky o�ers an accurate alternative to exact
3-D solutions when a small parameter is part of the problem. To obtain results that are consistently
accurate, asymptotical correctness is the most important thing. By asymptotically correct, we mean that
an expansion of the approximate solution in terms of a small parameter agrees with a similar expansion
of the exact solution up to a certain order in the small parameter. When this method is applied and
carried out to the extent that an asymptotically correct theory is obtained, this result is the most
accurate theory possible for a given degree of complexity. This method has been applied for the
transverse shear problem of prismatic isotropic beams by Berdichevsky and Kvashnina (1976) and to
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isotropic beams having initial twist and curvature by Berdichevsky and Starosel'skii (1983). Although it
has been applied to the analysis of initially twisted and curved anisotropic beams by, for example,
Cesnik (1994), Cesnik, Hodges and Sutyrin (1996a), and Cesnik and Hodges (1997), it has not been
applied toward the development of a re®ned theory which treats transverse shear deformation of
composite beams. Although Cesnik (1994) did develop a so-called `alternative theory' to treat transverse
shear e�ects, this theory is not asymptotically correct nor was it claimed to be.

Therefore, in this paper a re®ned theory to treat shear deformation in composite beams is carried out
via the variational-asymptotic method. The approach and the results are somewhat similar to those of a
similar analysis by Sutyrin and Hodges (1996) for laminated composite plates. In that work an
asymptotically correct re®ned theory having the form of a Reissner-like plate theory (analogous to a
Timoshenko-like beam theory) does not always exist for plates made of anisotropic materials. However,
by means of certain optimization procedures a Reissner-like theory can be obtained that is quite close to
being asymptotically correct.

2. Re®ned theory formulation

The classical theory of anisotropic beams, as developed by Hodges et al. (1992) and by Cesnik and
Hodges (1997), contains only four generalized strain measures: extension, torsion, and bending in two
directions. The di�erent levels of accuracy are assessed based on asymptotic series in terms of several
small parameters. One such parameter is the maximum strain in the beam, E. Classical theory assumes
E<<1. Another small parameter for beams is h/l, where h is a characteristic dimension of the cross
section, and l is the wavelength of the deformation along the beam. The approximation made is simply
that h<<l, which naturally leads to the neglect of derivatives of the 1-D strain measures with respect to
the axial coordinate. Transverse shear e�ects, on the other hand, stem from re®nements to the classical
beam analysis which lead to keeping terms in the energy up through h 2 relative to l 2. This has the e�ect
of allowing some of these derivatives to remain in the theory. It should be noted that the only
approximations in the present work stem from the order up to which small parameters in the strain
energy are retained, the ®nite element solution of the governing equations, and the least squares
solutions that are invoked when the resulting system of algebraic equations is overdetermined.

2.1. Beam kinematics

Normal cross sections of the beam and the Jaumann strain de®nition are considered. The coordinate
systems are shown in Fig. 1. The position vector of an arbitrary point on the cross section is given by

År�x1,x2,x3� � r�x1� � xaÃta�x1� �1�
in the undeformed state and

ÅR �x1,x2,x3� � R�x1� � xa ÃTa�x1� � wi�x1,x2,x3� ÃT i�x1� �2�
in the deformed state, where w is the warping ®eld and Ãt i and ÃT i are orthogonal triads of base vectors
for coordinate systems associated with the undeformed and deformed beam, respectively. The unit
vector Ãt 1 � @ År=@x1 is tangent to the undeformed beam coordinate axis along which x1 is de®ned. The
unit vector ÃT1 is tangent to the reference line of the deformed beam. The unit vectors Ãta are parallel to
the reference cross-sectional plane of the undeformed beam. (Note that Greek indices range from 2 to 3,
while Latin indices can have values 1, 2, or 3).
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Another triad which must be considered is ÃB i. The unit vectors ÃBa are ®xed in a frame associated
with the deformed beam reference cross-sectional plane. This frame is one in which the material points
of the undeformed beam cross-sectional plane undergo small deformation as pointed out by Cesnik and
Hodges (1997). Thus, ÃB1 deviates from the tangent position, but the triad ÃB i still forms an orthogonal
reference system. The orientation angles which relate ÃT i and ÃB i are small but ®nite quantities.

2.2. The strain ®eld

Using the method presented by Danielson and Hodges (1987) for small strain and small local
rotation, the strain ®eld for prismatic beams is obtained

G � �G�112G�122G�13G�222G�23G�33	T� Gee� Ghw� Glw
0, �3�

where the warping ®eld is

w � fw1 w2 w3gT �4�

and the nonlinear generalized 1-D strain measures are

e � fg11 b1 b2 b3gT: �5�

Here ( ) ' is the partial derivative with respect to x1, g11 is the stretch, b1 is the twist per unit length,
and ba is the bending curvature Ð all of which can be written in geometrically exact form for the triad
ÃT i; see the section on the specialized equations for zero transverse shear strain in Hodges (1990). The
operator matrices in Eq. (3) are de®ned as:

Fig. 1. Coordinate systems used for transverse shear formulation.
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and

Gl �
�
I3
O3

�
, �8�

where I3 is the 3 � 3 identity matrix, and O3 is the 3 � 3 zero matrix.
Here, all the quantities of the deformed geometry are still referred to the tangential system ÃT i and are

all dimensional. The warping ®eld must satisfy four constraint equations which serve to remove the
rigid-body modes from the warping ®eld. These equations are not unique; we follow Cesnik and Hodges
(1997) and write them as

hwii � 0

hx2w3 ÿ x3w2i � 0, �9�

and enforce them in their discretized sense and weakly (i.e., with Lagrange multipliers Ð see below).
The angle-bracket operator, used throughout the paper, is de®ned as

h � i � 1

A

�
A

� dx2 dx3, �10�

where A is the cross-sectional area.

2.3. First approximation (classical theory)

The strain energy is given by:

2U �


GTDG

�
�11�
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The ®rst approximation in determining the warping ®eld (see Cesnik et al. (1996a, 1996b)) comes
from keeping only terms up to order mE 2 in the strain energy, where m is the value of a typical material
modulus and E is the maximum magnitude of the strain. The ®rst approximation of the warping is
discretized using shape functions N so that w(x1,x2,x3)=N(x2,x3)V0(x1) where the shape functions N
have the order of unity. The strain energy is therefore written approximately as U=U0 so that

2U0 � V T
0EV0 � 2V T

0DheE� ETDeeE, �12�
where the following de®nitions are introduced

E �


�GhN�TD�GhN�

�
Dee �



�Ge �TD�Ge �

�
Dhe �



�GhN�TD�Ge �

�
�13�

Minimizing the energy with respect to the warping V0 and eliminating the rigid body modes by
introducing the Lagrange multipliers l, one obtains

Dhee� EV0 � Hccll, �14�
where

H �


NTN

�
�15�

The discretized condition to have the rigid-body modes removed from the warping ®eld is

V T
0Hccl � 0, �16�

where the rigid-body modes are obtained from the null space of matrix E

Eccl � 0: �17�
Here, ccl is the discrete version of the left hand sides of Eq. (9). Normalizing ccl such that

cT
clHccl � I4: �18�

Cesnik et al. (1996a, 1996b) showed that the Lagrange multipliers are

l � cT
clDhee: �19�

De®ning a symmetric matrix E �cl such that

E �clE � Iÿ cclc
T
clH, �20�

one can solve the equation for the discretized warping V

V � ÿE �clDheE,V̂E: �21�
One can now write the strain energy function for classical beam theory as

2U0 � ETAE, �22�
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where

A � Dee � V̂
T

0EV̂0 ��2DT
heV̂0, �23�

which is valid through order mE 2h 0/l 0=mE 2, which means that terms of order h/l are neglected compared
to unity.

2.4. Next approximation

According to the variational-asymptotic method, one must now consider the perturbation in the
warping ®eld

w � w�0�|{z}
E

� w�1�|{z}
Ehl

: �24�

Recall that the ®nite element discretization of the warping is given by w=NV where N represents the
matrix of the shape functions. For the above representation, the same shape functions for the
perturbation are used, viz.,

w�0� � NV0, w�1� � NV1 �25�

and

V � V0 � V1: �26�

Similar to the treatment of the classical warping, V1 does not contribute to the rigid motion of the
cross section so that

V T
1Hccl � 0: �27�

Use of Eq. (26) permits us to rewrite Eq. (3) in the form

G � Gee� GhNV0|����������{z����������}
E

� GhNV1 � GlNV0
0|��������������{z��������������}

Ehl

� GlNV1
0|����{z����}

E

�
h
l

�2

: �28�

Note that orders of magnitude in Eq. (28) are not assumed, but rather uniquely de®ned by
substitution of Eq. (28) into Eq. (11). Indeed, orders of terms with e and V0 are known from the
previous approximation, while minimization of Eq. (11) which is quadratic with respect to the unknown
V1 requires the leading quadratic and linear terms with respect to this unknown to be of the same order.
Note that the following terms vanish due to the Euler±Lagrange equation for V0 (which directly follows
from Eqs. (14) and (27))

2�Gee� GhNV0�TDGhNV1 � 0: �29�

Substituting Eq. (28) into Eq. (11) allows one to write consistently all terms in the energy with respect
to h/l in the form
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2U � 2 U0|{z}
E

�2 U1|{z}
Ehl

�2 U2|{z}
E

�
h
l

�2

: �30�

Terms of order U0 will correspond to the classical approximation (22). Terms of order (h/l )1 do not
contain V1 due to Eq. (29) and can be written as

2U1 � 2
ÿ
V T

0Dhl � eTDel
�
V0
0: �31�

Here and below, the following notation is used

Dhl �


�GhN�TD�GlN�

�
Del �



�GeN�TD�GlN�

�
Dll �



�GlN�TD�GlN�

�
�32�

Terms of order (h/l )2 can be expressed as

2U2 � e 0TV̂
T

0DllV̂0e 0 � 2L�V1� � Q�V1,V1�, �33�
where the linear L and quadratic Q operators (with respect to V1) are

2L�V1� � 2V T
1DhlV̂0e 0 � 2eT

ÿ
Del � V̂0Dhl

�
V1
0 �34�

Q�V1,V1� � V T
1EV1: �35�

Integration by parts and grouping Eq. (34) yields

2L�V1� � ÿ2V T
1D

T
ele
0 � 2V T

1

ÿ
Dhl ÿDT

hl

�
V̂0e 0: �36�

This leads to the following Euler±Lagrange equation:

EV1 �
h
DT

el �
ÿ
DT

hl ÿDhl

�
V̂0

i
e 0 �Hccll1, �37�

where l1 is a Lagrange multiplier which enforces the constraint of Eq. (27). Using a procedure identical
to one that was used previously to ®nd l, l1 is obtained and substituted into Eq. (37). This leads to an
expression for the second warping approximation

EV1 �
ÿ
IÿHcclc

T
cl

�h
DT

el �
ÿ
DT

hl ÿDhl

�
V̂0

i
e 0: �38�

This system must be solved for V̂1 where V1 � V̂1e 0 was considered. This is accomplished similarly to
before by introducing the matrix E �cl , such that

V1 � E �clDse 0,V̂1e 0, �39�
where a new matrix was de®ned

Ds � DT
el �

ÿ
DT

hl ÿDhl

�
V̂0: �40�
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Once V̂1 is found, it can be substituted back into Eqs. (34) and (35), which leads to determination of
all the terms in Eq. (33). Thus, the energy which is valid up through the second order can be expressed
as

2U � eTAe� 2eTBe 0 � e 0TCe 0 � 2eTDe0, �41�
where A is de®ned above and

B �
�
V̂

T

0Dhl � eDel

�
V̂0,

C � V̂
T

0DllV̂0 � 2V̂
T

1DhlV̂0 � V̂1EV̂1

D � Del � V̂0Dhl: �42�

3. Transformation to Timoshenko-like form

The Timoshenko-like formulation that is sought here implies writing the strain energy in the form

2U � �eTS�e , �43�
where S is the corresponding 6 � 6 sti�ness matrix and �e is an extended column matrix of 1-D strain
measures,

�e � fg11 k1 k2 k3 2g12 2g13gT �44�
and where the bending curvature in the relation between the curvatures in the tangential system bi and
the curvatures in the cross-sectional system ki can be shown to be given by

k1 � b1

ka � ba � eab2g1b
0: �45�

Here, eab is the permutation symbol, and terms of higher order have been neglected.
Consistent with the asymptotic analysis considered so far, it can be shown that the linear 1-D

equilibrium relation can be used without any loss of accuracy. It also follows that the shear force varies
along the beam with characteristic length l. (For the isotropic case the results are di�erent for a more
rapidly varying shear force, as discussed by Renton (1991). However, this is a case beyond the
Timoshenko-like modeling of the beam and will not be treated here). Thus, the equilibrium equations
reduce to the following. First, the force equilibrium equations are

Fi
0 � 0 �46�

and the moment equilibrium equations are

M1
0 � 0,

M2
0 � F3
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M3
0 � ÿF2: �47�

Expressions for the resultant interior forces are

F1 � @U

@g11
,

F2 � @U

@ �2g12�
,

F3 � @U

@ �2g13�
,

M1 � @U

@k1
,

M2 � @U

@k2

M3 � @U

@k3
: �48�

Following procedures conducted for isotropic beams by Berdichevsky and Kvashnina (1976) and
Berdichevsky and Starosel'skii (1983), we e�ectively rede®ne the 1-D variables by setting the last term in
Eq. (41) to zero. This leads to

2U � eTAe� 2eTBe 0 � e 0TCe 0: �49�
We can now incorporate Eq. (45) into a relation between classical 1-D strain measures (i.e., Euler±

Bernoulli) and Timoshenko-like 1-D strain measures such that

e � et �Dg 0, �50�
where

D �

2664
0 0
0 0
0 ÿ1
1 0

3775 �51�

and

g �
�
2g12
2g13

�
: �52�

Expressing the strain energy in terms of the Timoshenko beam strain measures gives

2U � ÿet �Dg 0
�T
A
ÿ
et �Dg 0

�� 2eTt Bet
0 � et 0

T
Cet 0: �53�

Neglecting higher order terms, expanding the expression, and dropping the index `t',
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2U � eTAe� 2eTADg 0 � 2eTBe 0 � e 0Ce 0: �54�
According to the Timoshenko-like form given by Eq. (43), the energy can also be written as

2U � eTXe� 2eTFg� gTGg, �55�
which implies that S is of the form

S �
�
X F
F T G

�
: �56�

Matrices X, F and G are the unknowns of the problem. Next, let us add and subtract some terms in
Eq. (54) and conveniently rearrange the expression;

2U � eTAe� eTFg� gTF Te� gTGg�
�
2eTADg 0 � 2eTBe 0 � e 0TCe 0 ÿ eTFgÿ gTF Teÿ gTGg

�
: �57�

To have the desired form for the energy, the expression in brackets must be identically zero. Denote
this expression with R. The variables e and e ' are considered as independent variables for the cross-
sectional problem. To express g as a function of e and e ', the equilibrium equations Eq. (47) are used.
Thus,

eabMa � Fb: �58�
De®ning the column matrix of resultant forces and moments as

F � fF1 M1 M2 M3gT �59�
and using Eqs. (48) and (49), one obtains

F � Ae� Be 0 �60�
or, taking the derivative,

F 0 � Ae 0 �61�
from the equilibrium equations it can be shown that e0 1 0. Using the D matrix as de®ned in Eq. (51),
one can write�ÿM3

M2

�
� ÿDTF: �62�

To obtain the expression for the shear forces, Eq. (55) together with Eq. (48) must be used. By taking
the derivatives with respect to g, one gets�

F2

F3

�
� Gg� F Te: �63�

Replacing the corresponding relations in Eq. (47),

ÿDTAe 0 � Gg� F Te, �64�
which ®nally gives the expression for g:

g � ÿG ÿ1F Teÿ G ÿ1DTAe 0 �65�
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or, denoting A �=ÿDTA,

g � G ÿ1A�e 0 ÿ G ÿ1F Te �66�

and, by di�erentiating,

g 0 � ÿG ÿ1F Te 0: �67�
Replacing the last two expressions in R and doing all the simpli®cations, one is left with

R � 2eT�A�TG ÿ1F T � B �e 0 � e 0T�Cÿ A�TG ÿ1A��e 0 � eT�FG ÿ1F T�e: �68�
Since each of the individual coe�cients of the bilinear form has to vanish, the second term gives

C � A�TG ÿ1A�: �69�
Matrix G is the unknown and, since it is symmetric, it contains 3 scalar unknown variables. Matrix C

is 4 � 4 and, since it is also symmetric, there are 10 distinct equations. This leads to an overdetermined
problem. Since A � is not a square matrix, the pseudoinverse technique can be used to obtain the
solution in the sense of a least-squares minimization problem, so that

G � Â�A�CA�T�ÿ1Â, �70�

where Â � A�A�T. From the ®rst term in Eq. (68), we note that

B � ÿA�TG ÿ1F T: �71�
An equation for F is now readily obtained by pre-multiplying by A �, then by Â

ÿ1
, and ®nally by G,

so that

F � ÿBTA�TÂ
ÿ1
G: �72�

One can notice that determining F was also an overdetermined problem since the matrix equation Eq.
(71) consists of 16 scalar equations, because F and B in general are not symmetric. The 8 elements of F
are the scalar unknowns.

The last term in Eq. (68) cannot be made zero. However, at a closer look, this term does not
contradict the assumed form for the energy Eq. (55) if X is taken as

X � A� FG ÿ1F T: �73�
Thus, all the elements of the 6 � 6 sti�ness matrix S have been found. It is important to acknowledge

that this is not an exact process, but actually it involves a minimization problem given by the existence
of a total of 26 equations and only 11 unknowns. It is remarkable that, even though the two approaches
are essentially di�erent, Sutyrin and Hodges (1996) arrived at a similar conclusion for the plate analysis
when 78 equations and 33 unknowns are found, exactly three times the numbers in the present
approach. There are cases when some of the equations are identities and thus, it is possible to have
situations when the solution is exact. One such example is given by isotropic material and symmetric
cross sections with the reference axes taken as the symmetry axes. However, in accordance with the
rigor of the above development, we expect that the solution for the general case is su�cient for most
applications requiring a Timoshenko-like model.
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4. The meaning of the shear strain variable

Since there are two main approaches to the transverse shear formulation: the geometric approach and
the energy approach, it makes sense to make a connection between them by extracting the geometrical
de®nition of the shear strain variable. In the present formulation, the de®nition of the shear strain
variable 2g12 comes from the relation for the resultant shear force:

F2 � @U

@ �2g12�
: �74�

Let us assume, for simplicity, a homogeneous, isotropic cross section. The resultant of the shear
stresses can be written

F2 �
�
A

s12 dA �
�
A

G2G12 dA � GAh2G12i �75�

Using Eq. (3), the expression for the strain becomes

2G12 � ÿx3k1 �
@
�
w
�0�
1 � w

�1�
1

�
@x2

�
D
w
�0�
2

E 0
: �76�

Taking h2G12i and assuming that the reference point is at the centroid, the ®rst term in Eq. (76) is
zero. Because hw�0�2 i � 0, the last term also turns out to be zero. Thus, we have

h2G12i �
*
@
�
w
�0�
1 � w

�1�
1

�
@x2

+
�
�
@w1

@x2

�
�77�

Thus, the shear force becomes

F2 � GA

�
@w1

@x2

�
�78�

For the case of isotropic material, it is customary to de®ne the shear coe�cient k based on the
relation

F2 � kGA2g12: �79�
For isotropic, symmetrical cross sections, it can be shown that the shear rigidity is given by

S22 � A2
44

C44
� kGA: �80�

This provides an expression for the shear coe�cient k. From Eqs. (78) and (79), the expression for
2g12 becomes

2g12 �
1

k

*
@w�1�1
@x2

+
, �81�

where the fact that, for this particular case, w
�0�
1 � 0 was used. In Eq. (80), A44 is a function only of

w (0), while C44 is a more complex function of both w (0), w (1) and their derivatives so that 2g12 does not
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have a simple expression. However, Eq. (81) shows that 2g12 depends only on the average of the cross-

sectional rotation about x3 as given by h @w
�1�
1

@x 2
i.

For the general case of anisotropic and/or nonsymmetric cross sections, the expression will still
depend on the average cross-sectional rotation, which will be given by both warping components in this
case, and the shear coe�cient will have a more complicated form.

5. Numerical results

The computer program VABS of Cesnik and Hodges (1997) has been upgraded to include the above
analysis. In this section, numerical results from VABS for both isotropic and anisotropic cases are
presented and compared with available published results.

5.1. Isotropic material

In general, results based on energy methods tend to be more consistent compared with the results
obtained by geometric method and, since the method presented here is an energy based method, only
such results from the literature are used for comparison.

For isotropic materials and symmetric cross sections with the reference axes coinciding with the
symmetry axes, the shear rigidity is based on the shear coe�cient k de®ned by the relation: S=kGA.
Tables 1 and 2 show the comparison between present results and other results from the literature for
the case of a rectangular cross section and a circular tube, respectively. It is interesting that several
researchers (e.g., those quoted by Mason and Herrmann, 1968; Kaneko, 1975; and Renton, 1991)
present results which, only when n=0, coincide with those presented in Tables 1 and 2. It would be
tempting to conclude that Berdichevsky and Starosel'skii (1983) ignore Poisson's ratio, but they do not.
Furthermore, results given in Berdichevsky and Kvashnina (1976) seem to vary with Poisson's ratio in
cases for which those of Berdichevsky and Starosel'skii (1983) do not. The reasons for this discrepancy
are not known to the authors; they may stem from a change of variable used in the former but not in
the latter.

A special case for isotropic material is given by nonsymmetric cross sections or cross sections for
which the reference axes are not the principal bending axes. This generalization was ®rst attempted by

Table 1

Shear coe�cients for an isotropic beam with square cross section

Source k

Roark (1954) 0.833

Berdichevsky and Starosel'skii (1983) 5/6=0.833

Present (n=0.3) 0.834

Table 2

Shear coe�cients for an isotropic circular tube (m= int diam/ext diam=0.92)

Source k

Berdichevsky and Starosel'skii (1983) 6�1�m2�2
7�34m2�7m4 � 0:5014

Present (n=0.3) 0.5014
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Mason and Herrmann (1968). In this case, cross-terms usually appear in the shear rigidities. Such terms
appear for symmetric cross sections, if the reference axes are not the principal bending axes. For
nonsymmetric cross sections the principal shear axes can be de®ned. They are, in general, di�erent from
the principal bending axes. Such an example is given by the trapezoidal section in Fig. 2. Results are
compared with the values obtained by Schramm et al. (1994). The shear deformation coe�cients, a22,
a33, a23 and a32, are de®ned based on the shear ¯exibilities Eq. (82):

2g12 � a22
F2

GA
� a23

F3

GA

2g13 � a32
F3

GA
� a33

F2

GA
: �82�

The variation of the shear coe�cients with the Poisson's ratio is presented in Table 3 for comparison
with the results of Schramm et al. (1994); very good agreement can be seen. It can be shown that, even
if the material is isotropic, the trapezoidal section is not an exact case in the sense de®ned earlier.

Another interesting case for isotropic beams is the rectangular cross section. In the literature prior to
Renton (1991), there is no di�erentiation with respect to which of the principal axes the shear coe�cient

Fig. 2. Trapezoidal cross section.
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applies. Most of the energy derivations give the value k= 5/6 for the shear coe�cient in either principal
direction. Renton considered the dependency of the results on the aspect ratio of the cross section a/b,
where b is the breadth and a being the depth of the cross section. He proposes the following relation for
b/ar1.0

k � 1:2� C2

�
n

1� n

�2
�
b

a

�2

�83�

with C2, for n=0.3, taking the values in Table 4. It is noticeable that neither Berdichevsky, who also
uses the variational-asymptotic method to determine the shear coe�cients, nor Washizu capture the
variation of the shear coe�cient with the Poisson ratio or the aspect ratio of the rectangular cross
section. Table 5 presents the values obtained using Eq. (83) together with the results of the present
approach for a square cross section (b/a = 1). Table 6 shows the values from Renton's formula and the
results obtained with the present approach relative to the softer direction when the ratio of the cross
section is varied and n=0.3.

Table 4

Values for C2

b/a C2

1.0 0.1392

2.0 0.3511

4.0 0.5900

10.0 0.8229

Table 5

Variation of shear coe�cient with Poisson ratio

n 0.0 0.3 0.4

1/k (Renton, 1991) 1.200 1.207 1.211

1/k (present) 1.199 1.207 1.211

Table 3

Shear coe�cients for an isotropic beam with trapezoidal cross section

Schramm et al. (1994) n=0 n=0.3 n=0.4 n=0.5

a22 1.3134 1.4654 1.5480 1.6305

a23 ÿ0.0638 ÿ0.0760 ÿ0.0827 ÿ0.0894
a33 1.1695 1.1707 1.1714 1.1720

Present a22 1.3132 1.4682 1.5509 Ð

a23 ÿ0.0638 ÿ0.0765 ÿ0.0833 Ð

a33 1.1695 1.1707 1.1716 Ð
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5.2. Anisotropic material

In contrast to the isotropic case, a true validation of the present results for the anisotropic case is
problematic. There are only a few known means of validation for the re®ned theory applied to
anisotropic beams. One way is to compare with 3-D exact solutions. Unfortunately, this is probably not
possible except in very simple cases and, even then, such solutions are unknown to the authors. Other
ways include the generation of 3-D ®nite element results to a very high degree of accuracy, with perhaps
millions of degrees of freedom, and carefully conceived experiments which somehow accentuate the role
of the small terms. Such validation studies are beyond the scope of this paper and should be the topic of
future research. About as far as one can go is to compare with results from other approaches, keeping
in mind the asymptotic nature of the present formulation.

In particular, published results from NABSA (Nonhomogeneous Anisotropic Beam Section Analysis)
can be used for comparison. A case considered by Hodges et al. (1992) is the strip-beam ®rst analyzed
by Minguet (1989). The cross section has width 1.182 in and thickness 0.05792 in and with the layup
[458/08]3s, which will be called the L1 con®guration. The material is AS4/3501-6, which is the same in all
of the following cases with the properties given in Table 7. The sti�ness constants are given in Table 8.
Unless otherwise speci®ed, the order in which the sti�nesses are given is 1 Ð extension, 2,3 Ð shear, 4
Ð torsion, 5,6 Ð bending. Results from the 6 � 6 formulations bear the names VABS (for the present
results) and NABSA, while results from the reduced 4 � 4 formulations are given under the names
NABSAR and VABSR. The reduced theory is developed by applying static condensation to the
transverse shear rows and columns of the 6 � 6 matrix. In all cases the values in the reduced
formulation of VABS have been found essentially identical to those of the classical formulation, as they
must be. The classical formulation is very well validated, so this is a useful means to check the
formulation; see Cesnik and Hodges (1997). The results obtained by applying the `alternative theory' of
Cesnik (1994) are given under the name VABSAT.

The results from NABSA are pretty close to those obtained using VABS, except for the shear sti�ness
coe�cient S33. The VABS result for this coe�cient, however, is closer to the one given by the alternative
theory. The present results di�er from both other theories in the case of the bending coe�cient S55 by
approximately 20%. It is noted, however, that the present result for S55 from VABSR is the same as that
of the VABS classical formulation, a well-validated and asymptotically correct formulation.

Table 6

Variation of shear coe�cient with the breadth-to-depth ratio relative to the soft direction

b/a 1 2 4 10

1/k (Renton, 1991) 1.207 1.275 1.703 5.582

1/k (present) 1.207 1.275 1.720 5.753

Table 7

Material properties

E11 20.6 � 106 psi

E22=E33 1.42 � 106 psi

G12=G13 0.87 � 106 psi

G23 0.696 � 106 psi

n12=n13 0.3

n23 0.34
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Other interesting cases are provided by box-beam con®gurations as shown in Fig. 3. The box beam
under consideration has an exterior width of 0.953 in and a depth of 0.53 in with walls of total thickness
0.030 in. An antisymmetric box-beam con®guration (B1) with a layup of [158]6 was also considered by
Hodges et al. (1992). The results are given in Table 9. The results of both reduced theories show the
signi®cant reduction in bending sti�ness due to the presence of bending±shear coupling, as the
discussion of Reh®eld et al. (1990) indicated should be present.

More cases of box beams are given by Bauchau and Hodges (1999). They have the same dimensions
and material properties as the previous box beam, except the Poisson ratio is n13=0.42. The layups
considered are given in Table 10. The order in which they are considered as indicated by the thick
arrows in Fig. 3. The results for each layup are given in Tables 11±13. It can be seen in Table 11 that a
very good agreement with the results from NABSA is obtained in the absence of structural couplings. In
Table 12, for an antisymmetric con®guration that exhibits extension±twist and bending±shear couplings

Table 8

Sti�ness coe�cients for L1 con®guration

S NABSA VABS VABSAT NABSAR VABSR

S11 0.8115 � 106 0.8112 � 106 0.8116 � 106 0.7884 � 106 0.7883 � 106

S12 ÿ0.4655 � 105 ÿ0.4609 � 105 ÿ0.4685 � 105 Ð Ð

S22 0.9368 � 105 0.9295 � 105 0.9291 � 105 Ð Ð

S33 0.6882 � 104 0.4034 � 103 0.4744 � 103 Ð Ð

S44 0.1251 � 103 0.1225 � 103 0.1290 � 103 0.1251 � 103 0.1194 � 103

S45 0.3455 � 102 0.3030 � 102 0.3653 � 102 0.3455 � 102 0.2938 � 102

S55 0.1852 � 103 0.2277 � 103 0.1864 � 103 0.1852 � 103 0.2275 � 103

S66 0.9178 � 105 0.9177 � 105 0.9179 � 105 0.9178 � 105 0.9177 � 105

Fig. 3. Box-beam geometry.
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the values follow the same trend. However, di�erences of up to 10% appear, for instance, in the shear
sti�ness S22. For the symmetric con®guration given by layup 3 which exhibits extension±shear, shear±
shear, bending±twist and bending±bending couplings, the agreement becomes worse for the sti�ness
coe�cients S13, S23, S33, S46 and S56. Note, however, that for the last two coe�cients only the signs are
di�erent. Also, poor agreement with shear-related coe�cients is seen in Table 9 where bending±shear
coupling is present. While the present results are based on aymptotic methodology, the analysis behind
NABSA, Giavotto et al. (1983), is not claimed to be asymptotic in any sense. Thus, because of the
absence of results in the literature which would truly validate a re®ned theory of this type, no de®nitive
conclusions can yet be drawn.

The last example for the transverse shear e�ect is provided by a comparison with the results in
Reh®eld et al. (1990) for the circular tube having a circumferentially uniform sti�ness (CUS) layup

Table 9

Sti�ness coe�cients for box-beam con®guration B1

S NABSA VABS NABSAR VABSR

S11 0.1438 � 107 0.1445 � 107 0.1438 � 107 0.1445 � 107

S14 0.1075 � 106 0.1090 � 106 0.1075 � 106 0.1089 � 106

S22 0.9018 � 105 0.5038 � 105 Ð Ð

S25 ÿ0.5204 � 104 ÿ0.2949 � 105 Ð Ð

S33 0.3932 � 105 0.2099 � 105 Ð Ð

S36 ÿ0.5637 � 105 ÿ0.2984 � 105 Ð Ð

S44 0.1678 � 105 0.1719 � 105 0.1678 � 105 0.1719 � 105

S55 0.6622 � 105 0.5462 � 105 0.3619 � 105 0.3736 � 105

S66 0.1726 � 106 0.1352 � 106 0.9179 � 105 0.9279 � 105

Table 10

Box-beam layups

Layup type Upper wall Lower wall Left wall Right wall

Layup 1 [08]6 [08]6 [08]6 [08]6
Layup 2 [(308,08)3] [(308,08)3] [(308,08)3] [(308,08)3]
Layup 3 [158]6 [ÿ158]6 [2158]6 [2158]6

Table 11

Sti�ness coe�cients for the box-beam con®guration Ð layup 1

S NABSA VABS VABSR

S11 0.177 � 107 0.177 � 107 0.177 � 107

S22 0.444 � 105 0.445 � 105 Ð

S33 0.190 � 105 0.191 � 105 Ð

S44 0.816 � 104 0.819 � 104 0.819 � 105

S55 0.869 � 105 0.869 � 105 0.869 � 105

S66 0.215 � 106 0.215 � 106 0.215 � 103
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made of IM6/R6376 Graphite/Epoxy. The material properties are E11=23.1 � 106 psi,
E22=1.4 � 106 psi, n12=0.338, G12=0.73 � 106 psi. The layup is given by [20,ÿ70,20,(ÿ70)2,20]T. The
elastic constants of the beam are given in Table 14. Di�erences appear for the shear sti�nesses and the
shear±bending couplings. It must be mentioned that the theory of Reh®eld et al. (1990) makes use of
some quite restrictive assumptions about the transverse shear which are adopted from the theory for
thin-walled beams made of isotropic material. These assumptions are that the shear strain is assumed
constant along the entire circumference and that there is no warping due to transverse shear. None of
these assumptions was made in the present approach.

To show the e�ects of the Timoshenko-like corrections relative to the classical theory for a composite
beam, one must look at the e�ect of the beam length. In Fig. 4, 1-D results are compared for the
sti�nesses provided by NABSA and VABS for box-beam con®guration B1 (see above), but varying
length. For a given cross section (so that b is ®xed), the horizontal tip de¯ection V=u2(L ) plotted as a
function of L/b. The subscripts CBT and TBT refer to classical beam theory (i.e., one which uses the
reduced 4 � 4 cross-sectional sti�ness matrix from either VABS or NABSA) and Timoshenko-like beam
theories based on sti�ness coe�cients from VABS and NABSA, respectively. One sees that as the beam
becomes longer (i.e., slenderer) the Timoshenko-like theories based on sti�nesses from VABS and
NABSA both converge to the classical result. As the beam becomes shorter, although the results are

Table 12

Sti�ness coe�cients for the box-beam con®guration Ð layup 2

S NABSA VABS VABSR

S11 0.125 � 107 0.125 � 107 0.125 � 107

S14 0.521 � 105 0.521 � 105 0.521 � 105

S22 0.981 � 105 0.871 � 105 Ð

S25 ÿ0.264 � 105 ÿ0.234 � 105 Ð

S33 0.424 � 105 0.373 � 105 Ð

S36 ÿ0.278 � 105 ÿ0.244 � 105 Ð

S44 0.177 � 105 0.177 � 105 0.177 � 105

S55 0.614 � 105 0.606 � 105 0.543 � 105

S66 0.152 � 107 0.150 � 107 0.134 � 107

Table 13

Sti�ness coe�cients for the box-beam con®guration Ð layup 3

S NABSA VABS VABSR

S11 0.137 � 107 0.137 � 107 0.992 � 106

S12 ÿ0.184 � 106 ÿ0.184 � 106 Ð

S13 0.144 � 103 0.176 � 104 Ð

S22 0.884 � 105 0.883 � 105 Ð

S23 ÿ0.821 � 102 ÿ0.842 � 103 Ð

S33 0.395 � 105 0.775 � 104 Ð

S44 0.173 � 105 0.174 � 105 0.174 � 105

S45 0.180 � 105 0.180 � 105 0.180 � 105

S46 0.358 � 103 ÿ0.362 � 103 ÿ0.362 � 103

S55 0.608 � 105 0.608 � 105 0.608 � 105

S56 0.377 � 103 ÿ0.372 � 103 ÿ0.372 � 103

S66 0.143 � 106 0.143 � 106 0.143 � 106
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qualitatively identical, there is a noticeable quantitative di�erence in the behavior. The results using
VABS properties are softer (yielding larger displacement) than those from NABSA properties. (It is
noted, however, that in the few cases observed where reduced results from NABSA and VABS are not
in agreement for one of the bending sti�nesses, the two sets of results would not converge to the same
result in the limit of L/b tending to in®nity).

6. Conclusions

A method capable of capturing the shear e�ects in beams made of arbitrary anisotropic material and
of general cross-sectional shape has been developed. The method is based on asymptotic expansion of
the energy in terms of a small parameter and then seeking the solution in a variational-asymptotic
manner. Transverse shear e�ects are captured and a physical interpretation of the resulting of the shear
variable was given.

It can be shown that for the situations when the sti�ness matrix is diagonal, the problem has an exact
solution. However, when o� diagonal terms are present, the set of equations which must be solved is
over-determined, so that the numerical results presented for such cases herein are determined from a
minimization process. Although results cannot be said to be asymptotically exact for cases that have

Table 14

Sti�ness coe�cients for circular tube con®guration Ð CUS

S Reh®eld et al. (1990) VABS VABSR

S11 0.1972 � 107 0.1886 � 107 0.1886 � 107

S14 0.6680 � 106 0.6086 � 106 0.6086 � 106

S22 0.2317 � 106 0.1137 � 106 Ð

S25 ÿ0.3340 � 106 ÿ0.1609 � 106 Ð

S33 0.2317 � 106 0.1137 � 106 Ð

S36 ÿ0.3340 � 106 ÿ0.1609 � 106 Ð

S44 0.4634 � 106 0.4159 � 106 0.4159 � 106

S55 0.9862 � 106 0.7109 � 106 0.4831 � 106

S66 0.9862 � 106 0.7109 � 106 0.4831 � 106

Fig. 4. E�ect of beam slenderness on horizontal tip de¯ection due to horizontal tip shear load (specialized to linear theory); solid

line Ð VABS; dashed line Ð NABSA.
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non-diagonal cross-sectional sti�ness matrices, the results presented are the best that can be obtained for
a Timoshenko-like theory in the present asymptotically exact formulation. It is possible that di�erent
ways of posing the problem asymptotically could get around this problem or lead to very slightly
improved results.

Results obtained for beams made of isotropic materials show very good agreement with energy-type
approaches in the literature. The method predicts a variation of the shear sti�ness coe�cients with the
breadth-to-depth ratio in the case of rectangular cross sections. Also, for a rectangular cross section
there is a slight variation of the shear coe�cient with Poisson's ratio. Cases with asymmetric cross-
sectional geometries, or symmetric cases with the reference axes not aligned with either axis of
symmetry, were studied for di�erent Poisson's ratio. Here, o�-diagonal shear couplings appear and a set
of principal axes associated with transverse shear can be determined which are, in general, di�erent from
the principal axes of bending.

Beams made of composite material are more challenging due to the presence of di�erent couplings
and also because few results are available in the literature to allow comparison. Results available for
strip-like con®gurations show good agreement with previous approaches. As expected, relatively large
changes in the bending sti�nesses were noticed for certain layups especially when bending±shear
couplings are present. For box beams the level of agreement with previous results varies from excellent
in the case of diagonal sti�ness matrices to cases when relatively large variations of some of the shear
rigidity terms were found for certain layups. The sti�ness model developed herein is somewhat softer
than that developed by Giavotto et al. (1983), which might imply that the latter model is somehow
overconstrained. However, the ultimate validation of a model to capture the transverse shear e�ect for
composite beams is beyond the scope of this paper. Indeed, comprehensive validation of the re®ned
model would require exact 3-D solutions, highly re®ned 3-D ®nite element computations, or possible
experiments.

The most important contribution of the present work concerning composite beams is the implied
proof that, since the problem for the general case is overdetermined, ``an asymptotically correct
Timoshenko-like theory cannot be obtained in the general case''. However, an approximate solution of
the resulting overdetermined set of equations can be found in terms of a least-squares minimization,
which still guarantees the best results within the given approximation. Even though entirely di�erent
approaches were used, the present determinations are parallel to the conclusions of Sutyrin and Hodges
(1996) for composite plates. A fundamental di�erence between the plate and the beam problems,
however, is that for plates the problem solved for the elastic constants is 1-D whereas for beams it is 2-
D, considerably more complex. From another perspective, plate analysis reduces the 3-D elasticity
formulation to a 2-D model, while for beams the 3-D formulation undergoes a more serious reduction
to a 1-D model. This is why a closed-form analytical solution for dimensional reduction of composite
beams is so much more involved, in general.
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